A study on problems associated with finite element excavation analysis by the stress-flow coupled method

Author(s):  
Hiroyasu Ohtsu ◽  
Yuzo Ohnishi ◽  
Haruo Taki ◽  
Katsumi Kamemura
2013 ◽  
Vol 10 (01) ◽  
pp. 1340003 ◽  
Author(s):  
T. NGUYEN-THOI ◽  
P. PHUNG-VAN ◽  
T. RABCZUK ◽  
H. NGUYEN-XUAN ◽  
C. LE-VAN

An edge-based smoothed finite element method (ES-FEM-T3) using triangular elements was recently proposed to improve the accuracy and convergence rate of the existing standard finite element method (FEM) for the solid mechanics analyses. In this paper, the ES-FEM-T3 is further extended to the dynamic analysis of 2D fluid–solid interaction problems based on the pressure-displacement formulation. In the present coupled method, both solid and fluid domain is discretized by triangular elements. In the fluid domain, the standard FEM is used, while in the solid domain, we use the ES-FEM-T3 in which the gradient smoothing technique based on the smoothing domains associated with the edges of triangles is used to smooth the gradient of displacement. This gradient smoothing technique can provide proper softening effect, and thus improve significantly the solution of coupled system. Some numerical examples have been presented to illustrate the effectiveness of the proposed coupled method compared with some existing methods for 2D fluid–solid interaction problems.


2007 ◽  
Vol 348-349 ◽  
pp. 761-764
Author(s):  
Tai Quan Zhou ◽  
Yuan Hua ◽  
Tommy Hung Tin Chan

The finite element analysis fully coupled fatigue damage evolution is implemented on the user subroutine UMAT of the finite element software ABAQUS. The fully coupled method developed with damage mechanics and the finite element analysis is performed on calculation of fatigue damage accumulation of the critical welded member in the Tsing Ma Bridge. The calculated result shows that the fatigue damage in the critical welded member is accumulated in the region of toe of welding. The value of faitgue life calculated by the fully coupled method is smaller than that by the uncoupled method, which suggests that there exists interaction between the fatigue damage evolution and the structural response. The linear Miner’s Law is widely used however conservative for the evaluation of fatigue life of bridge on service. The above results provide feasible method for accurate evaluation of fatigue damage in bridge components based on the hot spot stress analysis and the damage mechanics theory.


2015 ◽  
Vol 64 (3) ◽  
pp. 767-779 ◽  
Author(s):  
Yuan Yuan ◽  
Jianke Qiang ◽  
Jingtian Tang ◽  
Zhengyong Ren ◽  
Xiao Xiao

2020 ◽  
Vol 25 (3) ◽  
pp. 381-390
Author(s):  
Jing Xie ◽  
Yi-an Cui ◽  
Lijuan Zhang ◽  
Changying Ma ◽  
Bing Yang ◽  
...  

The streaming potential in porous media is one of the main constituents of the self-potential. It has attracted special attention in environmental and engineering geophysics. Forward modeling of streaming potentials could be the foundation of corresponding data inversion and interpretation, and improving the application effect of the self-potential method. The traditional finite element method has a large subdivision area and computational quantity, and the artificial boundary condition is not suitable for complex models. The Helmholtz-Smoluchowski equation is introduced for evaluating the streaming potential. Then three new shape functions of the multidirectional mapping infinite elements are proposed and the finite-infinite element coupling method is deduced for reducing the subdivision scale and improving both the calculation efficiency and accuracy. The correctness and validity of the new coupled method are verified by a resistive model in homogeneous half-space. Besides, a seepage model with complex terrain and a landfill model with dynamic leakages are modeled using the improved coupled method. The results show that the accuracy of the improved coupled method is superior to the unimproved coupled method, and is better than the finite element method. Also, the coupled method has better adaptability to complex models and is suitable for the accurate simulation of dynamic multi-source seepage models.


Sign in / Sign up

Export Citation Format

Share Document